Seri bahan kuliah Algeo #9

Vektor di Ruang Euclidean (bagian 1)

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Definisi Vektor

 Kuantitas fisik dapat direpresentasikan dalam dua jenis: skalar dan vektor

• Skalar: nilai numerik yang menyatakan besaran kuantitas fisik tersebut Contoh: temperatur 15° C, laju kendaraan 75 km/jam, panjang 2,5 m

Vektor: kuantitas fisik yang memiliki besar dan arah
 Contoh: kecepatan (v) mobil 80 km/jam ke arah timur laut

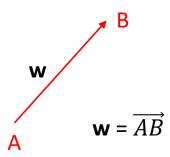
v= 80 km/jam

Notasi vektor

 Vektor dilambangkan dengan huruf-huruf kecil (dicetak tebal) atau memakai tanda panah (jika berupa tulisan tangan)

Contoh, **u**, **v**, **w**, ... atau
$$\overrightarrow{u}$$
, \overrightarrow{v} , \overrightarrow{w} , ... **a**, **b**, **c**, ...

• Secara geometri, vektor di ruang dwimatra (2D) dinyatakan sebagai garis berarah

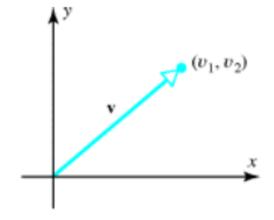


Ruang Vektor

- Ruang tempat vektor didefinisikan
- Disebut juga ruang Euclidean
- R², R³, Rⁿ

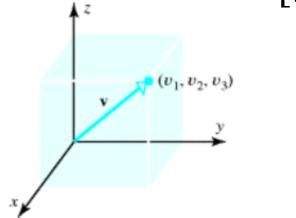
Vektor di R²

$$\mathbf{v} = (v_1, v_2)$$
 atau $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$



Vektor di R³

$$\mathbf{v} = (v_1, v_2, v_3)$$
 atau $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$



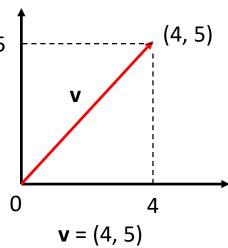
Vektor di Rⁿ:

$$\mathbf{v} = (v_1, v_2, ..., v_n) \text{ atau } \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

(tidak ada gambaran geometri vektor di Rⁿ)

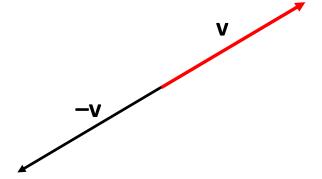
• Semua vektor yang ditulis sebagai $\mathbf{v} = (v_1, v_2)$, $\mathbf{v} = (v_1, v_2, v_3)$, atau $\mathbf{v} = (v_1, v_2, ..., v_n)$ berawal dari **titik asal** O.

- Titik asal vektor di R² adalah (0, 0)
- Titik asal vektor di R³ adakah (0, 0, 0)
- Titik asal vector di Rⁿ adalah (0, 0, ..., 0)



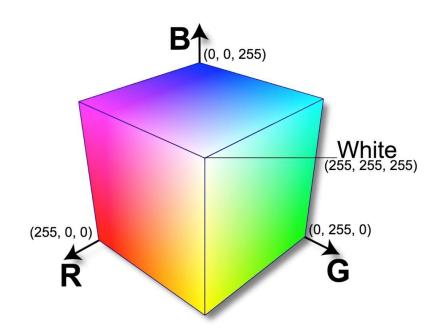
- Vektor nol adalah vektor yang semua komponennya 0
 - Vektor nol dilambangkan dengan 0
 - Vektor 0 di R^2 : **0** = (0, 0)
 - Vektor 0 di R^3 : **0** = (0, 0, 0)
 - Vektor 0 di R^n : **0** = (0, 0, ..., 0)

Negatif dari vektor v dilambangkan dengan –v



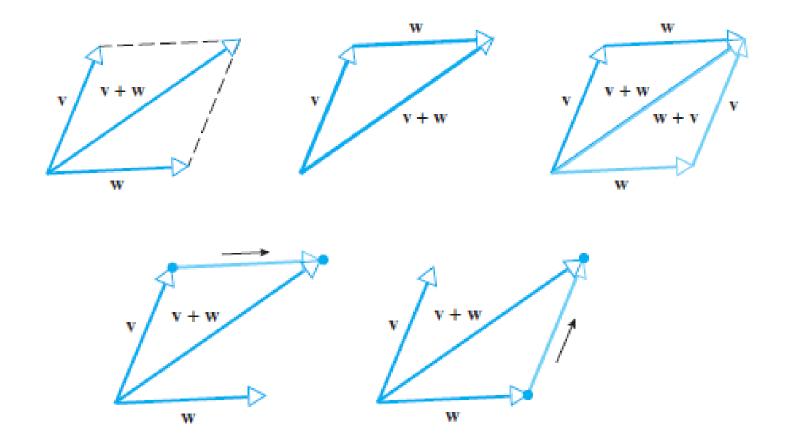
Contoh-contoh vektor:

- (i) $\mathbf{u} = (4, 5) \rightarrow \text{vektor di } \mathbb{R}^2$
- (ii) $\mathbf{v} = (-2, 3, 10) \rightarrow \text{vektor di } \mathbb{R}^3$
- (iii) $\mathbf{w} = (1, -5, 0, 7, 8) \rightarrow \text{vector di } \mathbb{R}^5$
- (iv) $\mathbf{c} = (r, g, b) \rightarrow$ warna di dalam model RGB (red-green-blue)



Penjumlahan dua vektor

• Menggunakan kaidah parallelogram atau kaidah segitiga

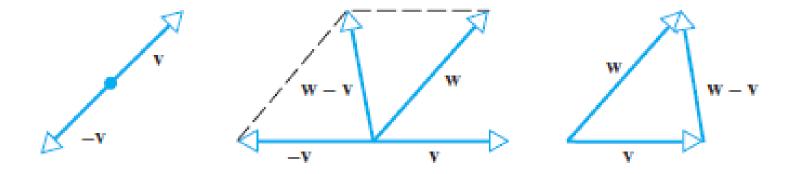


• Jika $\mathbf{v} = (v_1, v_2, ..., v_n)$ dan $\mathbf{w} = (w_1, w_2, ..., w_n)$ maka $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, ..., v_n + w_n)$

• Contoh 1: Misalkan $\mathbf{v} = (3, -1, 4)$ dan $\mathbf{w} = (4, 0, 8)$ maka $\mathbf{v} + \mathbf{w} = (3 + 4, -1 + 0, 4 + 8) = (7, -1, 12)$

Pengurangan dua vektor

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v})$$

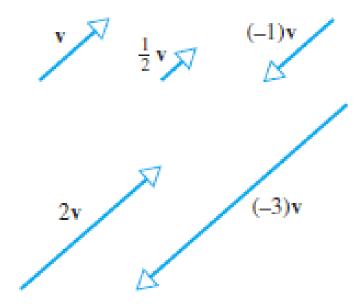


• Jika $\mathbf{v} = (v_1, v_2, ..., v_n)$ dan $\mathbf{w} = (w_1, w_2, ..., w_n)$ maka $\mathbf{v} - \mathbf{w} = (v_1 - w_1, v_2 - w_2, ..., v_n - w_n)$

• Contoh 2: Misalkan $\mathbf{v} = (3, -1, 4)$ dan $\mathbf{w} = (4, 0, 8)$ maka $\mathbf{v} - \mathbf{w} = (3 - 4, -1 - 0, 4 - 8) = (-1, -1, -4)$

Perkalian vektor dengan skalar

kv = vektor yang panjangnya |k| kali Panjang v

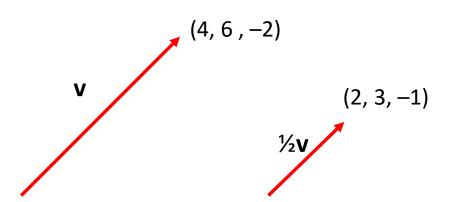


• Jika $\mathbf{v} = (v_1, v_2, ..., v_n)$ maka $k\mathbf{v} = (kv_1, kv_2, ..., kv_n)$

• Contoh 3: Misalkan v = (4, 6, -2) maka

$$2\mathbf{v} = (8, 12, -4)$$

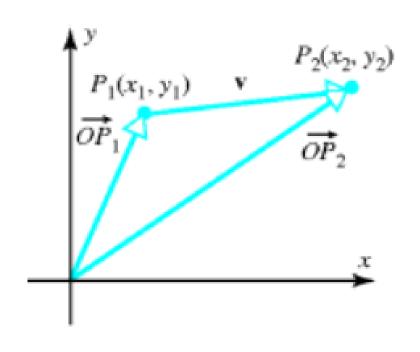
$$\frac{1}{2}\mathbf{v} = (2, 3, -1)$$



(8, 12, -4)

2**v**

Vektor yang tidak berawal dari titik asal



Di \mathbb{R}^2 : Misalkan $P_1(x_1, y_1)$ dan $P_2(x_2, y_2)$, maka

$$\mathbf{v} = \overrightarrow{P_1 P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$$

$$= (x_2, y_2) - (x_1, y_1)$$

$$= (x_2 - x_1, y_2 - y_1)$$

Di R³: Misalkan $P_1(x_1, y_1, z_1)$ dan $P_2(x_2, y_2, z_2)$, maka

$$\mathbf{v} = \overrightarrow{P_1 P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Contoh 3: Misalkan $P_1(2, -1, 4)$ dan $P_2(7, 5, -8)$, maka

$$\mathbf{v} = \overrightarrow{P_1 P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1) = (7 - 2, 5 - (-1), -8 - 4) = (5, 6, -12)$$

Norma sebuah vektor

- Panjang (atau magnitude) sebuah vektor v dinamakan norma (norm) v.
- Norma vektor \mathbf{v} dilambangkan dengan $\|\mathbf{v}\|$.
- Norma sebuah vektor dinamakan juga norma Euclidean.
- Norma vektor $\mathbf{v} = (v_1, v_2)$ di R² adalah $||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2}$
- Norma vektor $\mathbf{v} = (v_1, v_2, v_3)$ di R³adalah $||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + v_3^2}$
- Norma vektor $\mathbf{v} = (v_1, v_2, ..., v_n)$ di R^n adalah $||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$

• Jika $P_1(x_1, y_1)$ dan $P_2(x_2, y_2)$ ada<u>lah dua titik di R² maka jarak (d) kedua titik</u> tersebut adalah norma vektor P_1P_2 :

$$d = \|\overrightarrow{P_1 P_2}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \|\overrightarrow{P_1 P_2}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

• Jika $P_1(x_1, y_1, z_1)$ dan $P_2(x_2, y_2, z_2)$ adalah dua titik di R^3 maka jarak (d) kedua titik tersebut adalah norma vektor P_1P_2 :

$$d = \|\overrightarrow{P_1 P_2}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• Jika $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n)$ dan $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ adalah dua titik di \mathbb{R}^n maka jarak (d) kedua titik tersebut adalah $d(\mathbf{u}, \mathbf{v})$:

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Contoh 4:

(i) Misalkan $\mathbf{v} = (6, -2, 3)$, maka norma vektor \mathbf{v} adalah $\|\mathbf{v}\| = \sqrt{6^2 + (-2)^2 + (3)^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7$

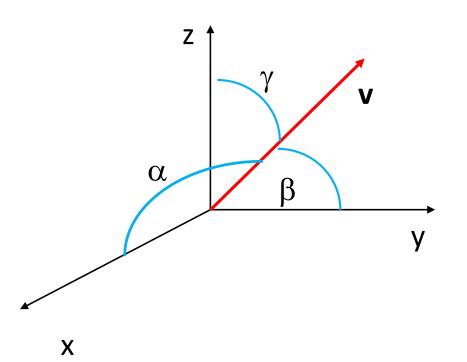
(ii) Jika $P_1(2, -1, -5)$ dan $P_2(4, -3, 1)$ maka jarak kedua titik adalah $d = \|\overrightarrow{P_1P_2}\| = \sqrt{(4-2)^2 + (-3-(-1))^2 + (1-(-5))^2}$ $= \sqrt{4+4+36} = \sqrt{44} = 2\sqrt{11}$

(iii) Misalkan $\mathbf{u} = (1, 3, -2, 7)$ dan $\mathbf{v} = (0, 7, 2, 2)$ adalah dua titik di \mathbb{R}^4 maka jarak antara \mathbf{u} dan \mathbf{v} adalah:

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(1-0)^2 + (3-7)^2 + (-2-2)^2 + (7-2)^2} = \sqrt{58}$$

Arah sebuah vektor

• Misalkan $\mathbf{v} = (v_1, v_2, v_3)$ adalah vector di \mathbb{R}^3 maka arah vektor \mathbf{v} adalah



$$\cos\alpha = \frac{v_1}{\|\mathbf{v}\|}$$

$$\cos \beta = \frac{v_2}{\|\mathbf{v}\|}$$

$$\cos \gamma = \frac{v_3}{\|\mathbf{v}\|}$$

Bersambung ke bagian 2